complete partial ordering - définition. Qu'est-ce que complete partial ordering
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est complete partial ordering - définition

TERM USED IN MATHEMATICAL ORDER THEORY
Directed complete partial order; Complete poset; Directed-complete poset; Directed-complete partially ordered set

complete partial ordering      
<theory> (cpo) A partial ordering of a set under a relation, where all directed subsets have a {least upper bound}. A cpo is usually defined to include a least element, bottom (David Schmidt calls this a pointed cpo). A cpo which is algebraic and boundedly complete is a (Scott) domain. (1994-11-30)
Chain-complete partial order         
POSET COMPLETION
Chain complete; Chain completeness
In mathematics, specifically order theory, a partially ordered set is chain-complete if every chain in it has a least upper bound. It is ω-complete when every increasing sequence of elements (a type of countable chain) has a least upper bound; the same notion can be extended to other cardinalities of chains..
Complete partial order         
In mathematics, the phrase complete partial order is variously used to refer to at least three similar, but distinct, classes of partially ordered sets, characterized by particular completeness properties. Complete partial orders play a central role in theoretical computer science: in denotational semantics and domain theory.

Wikipédia

Complete partial order

In mathematics, the phrase complete partial order is variously used to refer to at least three similar, but distinct, classes of partially ordered sets, characterized by particular completeness properties. Complete partial orders play a central role in theoretical computer science: in denotational semantics and domain theory.